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1. Introduction

Time series involve dynamic phenomena, being one of the
challenges in their analysis to discover patterns that govern the
series behavior. Since these patterns may vary over time, it is
reasonable to explicitly take into account possible changes that
could affect the studied phenomena.

For instance, in a sales prediction problem, factors such as
market changes, the actions of competitors and the development of
new products, among others, could influence sales pattern, which
therefore may suffer changes over time.

To obtain systematically good predictions in such a case, it may
be necessary to update the respective models from time to time.
Similar situations occur when dealing with predictive models to
estimate, e.g. stock prices, the number of customers in a given
market, as well as in other applications from business forecasting;
see e.g. [15,25].

There exist several approaches to develop forecasting models.
Two of the most common ones are on the one hand time series
methods, with techniques like ARIMA and exponential smoothing
and on the other hand regression methods, with techniques such as

linear regression, neural networks (NN), and support vector
regression (SVR). Especially SVR received recently a lot of attention
in time series forecasting [17].

A practical approach to build dynamic models for time series
prediction with seasonal patterns using regression is proposed. In
particular, SVR will be used, but the model updating strategy
presented in this paper can be applied using any regression
technique.

The main contribution of the proposed approach is to introduce
a systematic methodology for model updating this way avoiding
the time-consuming task of model construction.

This paper is organized as follows. Section 2 provides a review
of the literature related to model updating, as well as a description
of the support vector regression (SVR) algorithm. In Section 3, the
proposed model updating strategy is explained in detail. Section 4
presents experiments and results obtained when applying this
strategy to different time series. In each application a comparison
with the static case is provided. Finally, in Section 5 the main
conclusions and possible extensions of this work are discussed.

2. Review of related literature

2.1. Model updating

Model updating has received increasing interest in the data
mining community where a diverse terminology such as, e.g.
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concept drift, incremental learning, stream data mining, or
dynamic data mining is used.

First a brief explication of each one of these concepts is provided
followed by an introduction to what shall be understood as model
updating in this paper.

Concept drift [37] is known as the phenomenon of changes in
the target concept of a learning task where a difficult problem is
to distinguish between true drift and noise. Furthermore, it
might be desirable to detect recurring concepts that may be due
to cyclic phenomena, as is the case of the present paper.
Methods to handle concept drift using example selection and
example weighting are presented in [19], where support vector
machines are employed for classification. Techniques to update
a classifier given a drifting concept are presented, e.g. in [5]
where changes to a decision tree are proposed in order to
maintain its performance.

The most appropriate approach in the presence of concept drift
is incremental learning [32] where the respective models are
updated online as new instances become available. Batch learning
systems, instead, examine a collection of instances adapting the
respective model ‘‘from time to time’’.

Incremental concept formation using machine learning has
been studied, e.g. in [23], where a new learning approach based
on the theory of formal concept analysis (FCA) has been
suggested.

Using neural networks for incremental learning can lead
to the well-known phenomenon of ‘‘catastrophic forgetting’’. In
[31] solutions for this problem based on the pseudo-
rehearsal mechanism are analyzed and new developments are
presented.

The approach presented in this paper learns incrementally but
with an appropriate time window instead of an adaptation each
time a new observation becomes available.

Recently, mining stream data has attracted interest in the
respective research community, see e.g. [8,3]. Typical applications
are the analysis of transaction data, e.g. for credit card fraud
detection and time series analysis. One problem in this field is to
find a trade-off between memory usage, i.e. window size and
mining accuracy.

Dynamic data mining [36] has a broader view since it includes
all data mining aspects where a changing environment is
considered explicitly. Examples are analyses of object-describing
trajectories instead of pictures taken at a certain point of time; see
e.g. [18]. Dynamic class structures are considered, e.g. in [10]
where a methodology for updating clustering models using fuzzy
logic has been presented.

This paper proposes how to update regression models that will
be used for time series prediction. In order to avoid confusion, a
clear distinction between model updating and forecast updating is
necessary.

In forecast updating, predictions determined in the past are
updated using the most recent information available but main-
taining the respective model unchanged. In model updating,
however, the predictive model is updated, i.e. its predictors and
parameters.

Forecast updating has been employed in various real-world
applications. It affects, e.g. pricing decisions in a supply chain
when a supplier updates his/her forecasts of a distributor’s
demand; see [13]. The respective research has considered
techniques like ARIMA [6,21], where the effect of improving
forecasts of aggregated data (e.g. quarterly aggregates) using
disaggregated data (e.g. monthly data) is analyzed. Other
related issues are, e.g. the evaluation of the respective forecast
accuracy provided at different instants of time and the
determination of the most convenient time lag to provide
forecasts.

The added value of forecast updating has been studied in
various experiments; see e.g. [22]. For trended time series it could
be shown that incorporating the most recent observation
improved forecast accuracy [30]. For relatively stable time series,
however, there appeared to be no value in updating time series
forecasts.

The problem of model updating, however, has not yet received
proper attention in literature so far and is the main focus of the
present paper.

2.2. Support vector regression

The standard SVR algorithm is described, which uses the so-
called e-insensitive loss function proposed by Vapnik [34]. This
function allows a tolerance degree to errors not greater than e. The
description is based on the structure and terminology used in
[28,33].

Let ðx1; y1Þ; . . . ; ðx‘; y‘Þ, where xi 2<n and yi 2<8i ¼ 1; . . . ; l, be
the training data points available to build a regression model. The
SVR algorithm applies a transformation function F to the original
data points from the initial Input Space (<n) to a generally higher-
dimensional Feature Space (F). In this new space, a linear model f is
constructed, which represents a non-linear model in the original
space:

F : Rn! F;w2 F
f ðxÞ ¼ hw;FðxÞi þ b

(1)

When the identity function is used, i.e. FðxÞ! x, no transformation
is carried out and linear SVR models are obtained.

The goal when using the e-insensitive loss function is to find a
function f that fits given training data with a deviation less or
equal to e, and at the same time is as flat as possible in order to
reduce model complexity. This means that one seeks a small
weight vector w. One way to ensure this is by minimizing the
norm kwk2 [26,33] leading to the following optimization
problem.

Min
w;b

1

2
kwk2

s:t
yi � hw;FðxiÞi � b � e 8 i ¼ 1; . . . ; ‘:
hw;FðxiÞi þ b� yi � e 8 i ¼ 1; . . . ; ‘:

(2)

This problem could be infeasible. Therefore, slack variables ji; j
�
i

are introduced to allow error levels greater than e, arriving at the
following formulation:

Min
w;b

1

2
kwk2 þ C �

X‘

i¼1

ðji þ j�i Þ

s:t
yi � hw;FðxiÞi � b � e� ji 8 i ¼ 1; . . . ; ‘:
hw;FðxiÞi þ b� yi � e� j�i 8 i ¼ 1; . . . ; ‘:
ji; j

�
i �0 8 i ¼ 1; . . . ; ‘:

(3)

This is known as the primal problem of the SVR algorithm; see e.g.
[34]. The objective function takes into account generalization
ability and accuracy in the training set, and embodies the
structural risk minimization principle [35]. Parameter C indicates
the trade-off between generalization ability and accuracy in the
training data, and parameter e defines the degree of tolerance to
errors.

To solve the problem stated in Eq. (3), it is more convenient to
represent the problem in its dual form. For this purpose, a Lagrange
function is constructed, and once applying saddle point conditions,
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the following dual problem is obtained:

Max
a;a�
�1

2

X‘

i; j¼1

ðai � a�i Þða j � a�jÞhFðxiÞ;Fðx jÞi � e
X‘

i¼1

ðai þ a�i Þ

þ
X‘

i¼1

yiðai � a�i Þ (4)

s.t.

ai;a
�
i � C 8 i ¼ 1; . . . ; ‘ (5)

ai;a
�
i �0 8 i ¼ 1; . . . ; ‘ (6)

X‘

i¼1

ðai � a�i Þ ¼ 0 (7)

This is the quadratic optimization problem which has to be solved to
obtain the solution of the SVR model. This solution will be function of
the dual variables ai and a�i . Using saddle point conditions it can be
shown that Eq. (8) holds [35]. Replacing this expression in Eq. (1), the
final solution of the SVR algorithm is obtained (see Eq. (9)):

w ¼
X‘

i¼1

ðai � a�i ÞFðxiÞ (8)

f ðxÞ ¼
X‘

i¼1

ðai � a�i ÞKðxi; xÞ þ b (9)

Here, the expression Kðxi; xÞ is equal to hFðxiÞ;FðxÞi, which is known
as the Kernel Function [34]. The existence of such a function allows us
to obtain a solution for the original regression problem, without
concerning about the transformation FðxÞ applied to the data.

3. SVR-UP: a model updating strategy for time series prediction
using support vector regression

In this section, the strategy to develop dynamic forecasting
models using support vector regression is described. First, a
general perspective of this strategy called SVR-UP is presented

briefly, to show how it performs feature selection, model
selection, and model updating. Then, its details are provided.

3.1. General view of the proposed model updating strategy

The proposed model updating strategy combines feature
selection using a wrapper method with model selection using
grid search. It has been developed using SVR but any other
regression technique can be used as well.

Fig. 1 illustrates the proposed strategy. The first step consists of
dividing the data into training, validation, and test subsets. Training
data is used for model construction, validation data for model and
feature selection, and test data is a completely independent subset
which provides an estimation of the error level the model would
have in future applications. As will be seen later, these are dynamic
subsets since model updating is performed.

Once all the variables have been normalized in order to have
values from the same scale (step 2), some base parameters are
fixed and then feature and model selection are performed. The
basic idea of this strategy can be summarized as follows. First, base
parameters (e, C, and kernel parameter) are calculated that work
well under some general conditions (step 3). Using these base
parameters e0 , C

0
, K

0
, feature selection using a wrapper method

with forward selection strategy is carried out to obtain the best set
of features X� (step 4). Finally, using X�, the final model parameters
e�, C�, K� are determined (step 5) applying Grid Search around base
parameters. This way, we arrive at a predictive SVR model which is
determined by parameters e�, C�, kernel function K�, and features
X� (step 6).

Base parameters e0 and C
0

are calculated using the empirical
rules proposed by Cherkassky and Ma [9], which gave good results
in various time series applications. Finally, a RBF kernel
transformation is applied to the original data, fixing its parameter
(s) based on exploratory analyses.

Feature selection (step 4) is applied using a wrapper method
with forward selection, inspired by Kohavi and John (see [20]) as
described next where the terms predictors, features and variables
are used indifferently. A maximum number of possible predictors
maxp-tuple is fixed regarding the nature of the problem and the
number of training data points.

Fig. 1. The SVR-UP strategy.
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The feature selection method starts building models with each
individual variable as single predictor. In the second iteration, the
best individual predictors are combined with the other variables.
The best 2-tuple of predictors are kept for the next iteration, and so
on until the best maxp-tuple of predictors is obtained. Finally, the
best tuple of variables among all the best i-tuple determined in the
iterative process (i ¼ 1; . . . ;max p) are chosen, to be the features X�

that will be used in the final SVR model.
Model selection (step 5) consists of performing the well-known

Grid Search mechanism [7,12,27], around base parameters e0 , C
0
, K
0
.

The best point of the grid is the set of model parameterse�, C�, K� that
will be used for prediction. Fast grid search (see [4]) is an interesting
alternative for parameter selection in time-critical applications
since it determines parameters much faster than conventional grid
search. Since our applications are not time-critical and fast grid
search did not provide a superior forecasting performance we
applied conventional grid search in our experiments.

The final element of our framework – and the central issue of
the present paper – is model updating, which will be explained in
detail in the following subsection.

3.2. Development of the proposed model updating strategy

Let ðx1; y1Þ; . . . . . . ; ðxm; ymÞ, where xi 2<n and yi 2<8i ¼ 1; . . . ;m,
be the data points available to build a regression model for
predicting the values of the time series defined by yi. We suppose the
series to be characterized by seasonal patterns of length c, i.e. a
season is formed by cycles of c data points.

3.2.1. The static case

The static approach sequentially splits the data into training,
validation, and test sets.

The static configuration of these 3 subsets is represented by a
matrix as shown in Fig. 2 where index 1 represents the position of
the initial training data point and index k the position of the final
training data point. The validation set has indices (kþ 1, l) and test
indices are (lþ 1, m).

The indices k and l are defined to obtain the desired proportion
of data belonging to each subset.

3.2.2. The dynamic case

The model updating strategy has been designed to deal with
time series with seasonal patterns. A complete seasonal pattern
will be called a cycle; examples are, e.g. monthly data with yearly
seasonality, where a cycle is defined by a year (see Fig. 3) or weekly
data with monthly seasonality, where a cycle is defined by a
month.

First, the length of the cycles of the series has to be identified.
For this purpose, graphical inspection, autocorrelation analysis or
spectral analysis can be carried out. For example, the monthly
series shown in Fig. 3 is characterized by yearly cycles.

Once identified the length of the series’ cycles, a test set
containing at least two cycles is defined (step 1 in Fig. 1). This test
set is divided into subsets, each one containing a single cycle, as
shown in Fig. 4.

Let there be p cycles of length c, i.e. ðm-lþ 1Þ ¼ p � c
observations belonging to the test set. In the static case, just
one model to predict all observations contained in the test set
would be constructed, as well as for future observations,
maintaining this model throughout the entire procedure
unchanged. The main idea of the proposed updating strategy,
however, consists of developing different predictive models for
each cycle of the test set, as well as for any future cycle by
considering the most recent information for model construction,
i.e. adding it into the training set.

Next, the training and validation sets have to be configured for
predicting the first cycle of the test set. Fig. 5 displays such
configuration.

As can be seen, training data contains two parts where the first
part is a set of past (or historical) data and the second part contains
the most recent information.

An entire cycle prior to the first cycle of the test set is part of the
second training set. This way, we ensure that most recent
information influences model construction.

Fig. 2. Static configuration.

Fig. 3. Yearly cycles in monthly data.
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During the following cycles the desired proportions of data
belonging to the training set (PropTr) and validation set (PropVa)
have to be maintained. These are determined as in the static case
and defined as:

Pro pTr ¼ kþ c

l
(10)

Pro pVa ¼ l-c-k

l
(11)

These proportions do not consider data points belonging to the test
set. To predict the second cycle of the test set, the first cycle of the
test set (this data is now part of the past) is added to the most
recent part of the training set, and a different predictive model
having the configuration shown in Fig. 6 is built.

The proportions of data belonging to the training and validation
sets have to be kept stable over time. For this purpose, data from
the first part of the training set is moved to the validation set (see
Fig. 6) as long as no data is moved from the most recent training set
to the validation set.

The number of data points to be moved is determined according
to the original proportion of data in each subset; see PropTr and
PropVa defined above.

This strategy will be applied to build predictive models for the
rest of the cycles of the test set, as well as for any future
observations. When building a predictive model for a generic cycle,
the first cycle of the previous test set is moved to the most recent
training set. Then we move the first cycle from the most recent
training set to the validation set and – if necessary – the first cycle

from the validation set to the first training set in order to maintain
the established proportions.

4. Experiments and results

The proposed SVR-UP strategy has been applied to two different
problem domains. The following two subsections describe the
respective data sets, the problems to be solved, the application of
the strategy SVR-UP, and the respective results for each domain.

Static versions are obtained by applying the proposed
methodology without the updating step described in Fig. 1, while
dynamic models use this step for each cycle of the test set. Static
models are called SVR-Stat, whereas dynamic models are called
SVR-UP.

4.1. Time series from the M1 competition

The M1 competition consists of a set of 1001 time series from
the business domain [24]; the data set is available, e.g. in http://
forecasters.org/.

Four different time series with seasonal patterns from the M1
data set have been considered: Series 21 (QRM1), Series 27
(QNI10), Series 51 (MNM15), and Series 98 (MNG37). The first two
series (21 and 27) consist of quarterly data, and the last two series
(51 and 98) consist of monthly data. Those four series have been
selected because they match the requirements to apply the
proposed model updating strategy.

For quarterly series, the test set is formed by the last 2 years of
information (8 observations). One static model is constructed for
predicting the test set, and 2 different models are constructed

Fig. 6. Predicting the second cycle (C2).

Fig. 4. Splitting the test set.

Fig. 5. Predicting the first cycle (C1).
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when applying our model updating strategy (one for each year of
the test set since each year defines a different cycle).

For monthly series, the test set is formed by the last 18
observations (1.5 years). Every 6 months a new cycle of the series is
defined, therefore when using the proposed dynamic strategy
three different predictive models are constructed (one for each
semester of the test set).

Lags of the series and temporal attributes are defined as
possible predictors for the four series, and a maximum of 5 and 8
predictors to be included both in static and dynamic models
are defined in the cases of quarterly and monthly series,
respectively.

The employed error measures are: MAPE (mean average
percentage error), MAE (mean average error), and RMSE (root
mean square error).

Results obtained using SVR-Stat and SVR-UP models are shown
in Table 1. In most of the cases improvements are achieved when
applying the proposed model updating strategy; exceptions are
series 98 using MAE (accuracy is maintained in this case) and
RMSE.

4.2. Sales prediction problem

The proposed model updating strategy has also been applied to
a real-world problem, where a company wants to predict the
number of units that will be sold 1 week ahead. For confidentiality
reasons the company’s name and its products, as well as the
specific industry can not be disclosed. Weekly sales data for 5
different products from January 2001 to September 2004 was
provided to build and test the models.

These five time series are characterized by a strong monthly
seasonality, as is shown exemplarily in Figs. 7 and 8 for the case of
product P1.

Consequently, each month corresponds to a different cycle.
Data from April 2004 to September 2004, containing 6 different
cycles has been used as test set. Applying the model updating
strategy, different predictive models will be constructed for these 6
cycles. Training and validation sets are defined in a proportion of
around 6–1.

In the feature selection step lags of the series and temporal
attributes (month, holidays, etc.) have been identified as possible
variables of the regression model (see also [16]).

Table 2 shows the test set error obtained for each one of the 5
products, using static and dynamic SVR models.

As can be seen, improvements in all 5 series are obtained when
using dynamic SVR models instead of static ones, being this
validated by using 3 different error measures.

The above presented results show considerable improvements
in the experiments conducted. Nevertheless, statistical relevance
of these improvements has to be tested.

For this purpose, a paired samples t-test has been performed for
each error measure, since forecasts generated by different models
for a given time series are not statistically independent. The same
procedure was applied, e.g. in [29]. In our case, we compare static
and dynamic versions of SVR.

The paired samples t-test provided the following results for
the three different error measures: MAPE (t ¼ 6:873, df ¼ 181,
p<0:001), MAE (t ¼ 5:312, df ¼ 181, p<0:001), RMSE (t ¼ 3:556,
df ¼ 181, p<0:001).

These results show that improvements obtained by applying
the proposed model updating strategy are statistically significant.

Table 1
Test set errors for four series of the M1 competition

Series SVR-Stat SVR-UP

Test set MAPE (%)

Series 21 20.99 17.44

Series 27 7.09 3.98

Series 51 15.42 8.74

Series 98 2.92 2.88

Test set MAE

Series 21 56.6 46.0

Series 27 8.1 4.5

Series 51 2625.0 1347.2

Series 98 3.3 3.3

Test set RMSE

Series 21 63.6 50.8

Series 27 9.8 5.4

Series 51 3112.0 1629.2

Series 98 4.6 5.0

Fig. 7. Weekly sales series for product P1 (01/2001-09/2004).
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5. Conclusions and future work

A model updating strategy for time series with seasonal
patterns has been presented, that can be used when support vector
regression is applied for time series prediction. The main
characteristics of this updating strategy are:

� A test set containing at least two cycles is defined. Different
predictive models are constructed for predicting different cycles
of the test set.
� A training set consisting of two parts is defined: the first part

contains historical data, and the second part contains the most
recent data (‘‘most recent’’ in the sense of the test set we are
trying to predict).
� Predictive models are updated every time a complete new cycle

is received; this information is incorporated into the most recent
training set. This ensures that both, historical as well as most
recent patterns are taken into account in model construction.
� The proportion of data belonging to the training and validation

sets is kept stable over time by shifting data points from the

training set to the validation set, each time when model updating
is carried out.

This model updating strategy has been applied to predict in
total nine time series from two different domains. The use of 3
different error measures (MAPE, MAE and RMSE) validates the
results. Improvements were obtained in almost all the series
studied in this work.

The findings obtained in this paper underline that future work
has to be done in the field of model updating for time series
prediction, since dynamic phenomena could be better predicted
using dynamic models. Next, some ideas regarding future work are
presented.

In the proposed approach historical information is never
removed. Since short time spans were covered in the time series
analyzed in this paper, there was no need to deal with this issue.
For longer ranges of information, it could be undesirable to
maintain all the data being part of the predictive model, since the
underlying distribution of the data could change over time.

The following idea for removing old data of the formulation
(Batch removing strategy) is proposed: define a number N of
cycles for which all the data available to build models are
maintained, without removing samples. During this period, the
proposed model updating strategy is applied. The oldest N cycles
of information will be removed when N cycles of new data
had arrived. When this occurs, the respective indices are
redefined to represent exactly the initial situation, but now
with new data.

Another interesting issue regarding future work is model
adaptation between two consecutive cycles. The proposed
model updating strategy considers a retraining approach under
certain well defined conditions and updating rules for the
training and validation sets when new information is received.
Alternatively, it could be interesting to develop an updating
strategy which successfully updates a predictive model each
cycle by just adapting the model’s parameters instead of
complete retraining.

As extensions of the presented work, it would be interesting to
adapt our model updating strategy to alternative regression
approaches (e.g. linear regression, non-linear regression, neural
networks [11,14], and hybrid approaches [1,12]) as well as to time
series techniques other than regression-based approaches, such as
ARIMA or exponential smoothing.

Fig. 8. Zoom of sales series for product P1 (04/2004-09/2004).

Table 2
Test set errors for five series of a sales prediction problem

Series SVR-Stat SVR-UP

Test set MAPE (%)

Product P1 30.14 11.86

Product P2 14.89 11.44

Product P3 7.00 6.51

Product P4 15.24 11.01

Product P5 13.04 9.98

Test set MAE

Product P1 721.8 342.3

Product P2 357.2 283.3

Product P3 104.7 96.4

Product P4 386.7 283.9

Product P5 407.7 264.1

Test set RMSE

Product P1 835.4 534.7

Product P2 408.7 351.6

Product P3 147.4 138.2

Product P4 501.0 375.2

Product P5 550.6 369.1
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